First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing/Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– (Press Release)
- Release Date
- 16 Oct, 2014
- BL15XU (WEBRAM)
National Institute for Materials Science (NIMS)
Kyoto University
Kyushu University
Japan Science and Technology Agency (JST)
1. A research team consisting of Osami Sakata, the director of the Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division (Yasuo Koide, director), NIMS (Sukekatsu Ushioda, president); Professor Hiroshi Kitagawa, Graduate School of Science, Kyoto University; and Professor Michihisa Koyama, Inamori Frontier Research Center, Kyushu University, made the first observation of the electronic structure in silver-rhodium (Ag-Rh) alloy nanoparticles to investigate why the alloy possesses a hydrogen absorbing/storage property like palladium (Pd) does, given that bulk Ag and Rh do not form an alloy, and that neither element alone is a hydrogen absorbing/storage metal. It is expected that these results will further promote the creation of novel functional materials through the fusion of different elements, a technique likened to modern-day alchemy. Publication: |
《Figures》
and Ag0.5Rh0.5 alloy nanoparticles using high-brilliant synchrotron radiation.
(a) Valence band spectra generated by applying high-brilliant synchrotron radiation to Ag0.5Rh0.5 alloy nanoparticles (dotted red line) and Pd nanoparticles (solid black line) in the binding energy range of 0 to 15 eV. The intensity for Ag0.5Rh0.5 alloy nanoparticles was about the half of that for Pd nanoparticles.
(b) Valence band spectra for Ag0.5Rh0.5 alloy nanoparticles (dotted red line; its spectral intensity profile was elevated to overlap with that of Pd) and Pd nanoparticles (solid black line) spotlighting the binding energy range of 0 to 3.5 eV. Dotted blue line indicates the difference between the elevated spectra for Ag0.5Rh0.5 alloy nanoparticles and the spectra of Pd nanoparticles. EF is the Fermi energy.
For more information, please contact: |
- Previous Article
- Clarification of Mechanism Underlying Destruction of Red Blood Cells by Pathogenic Bacteria (Press Release)
- Current article
- First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing/Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– (Press Release)