SPring-8, the large synchrotron radiation facility

Skip to content
» JAPANESE
Personal tools
 

High-speed switching for ultrafast electromechanical switches and sensors (Press Release)

Release Date
28 Aug, 2017
  • BL13XU (Surface and Interface Structures)
  • BL15XU (WEBRAM)

August 29, 2017
Tokyo Institute of Technology
Nagoya University
Japan Synchrotron Radiation Research Institute (JASRI)
National Institute for Materials Science (NIMS)
University of New South Wales

Scientists at Tokyo Institute of Technology, Nagoya University, Japan Synchrotron Radiation Research Institute (JASRI), National Institute for Materials Science (NIMS) and University of New South Wales have observed high-speed switching in Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses. Unlike the slow ferroelastic domain switching expected for ceramics, high-speed sub-microsecond ferroelastic domain switching and simultaneous lattice deformation are directly observed for the Pb(Zr0.4Ti0.6)O3 thin films. This exciting finding paves the way for high-frequency ultrafast electromechanical switches and sensors.

Piezo micro electro mechanical systems (piezoMEMS) are miniaturized devices exhibiting piezoelectricity, i.e., the appearance of an electric charge under applied mechanical stress. These devices have many diverse applications in energy harvesters, micropumps, sensors, inkjet printer heads, switches, and so on. In permanently polarized (ferroelectric) materials, ferroelastic domain switching affects the piezoelectric properties significantly, and this behavior can be exploited for piezoMEMS applications.

Pb(Zr1-xTix)O3 (PZT) thin films have excellent piezoelectric and ferroelectric properties; therefore, they are potential candidates for MEMS applications. Under an applied electric field, both lattice elongation and 90° ferroelastic domain switching are observed in tetragonal PZT thin films. In particular, non-180° ferroelastic domain switching has important implications for the future realization of high-performance piezoMEMS devices.

However, before the recent investigation, the speed of this 90° domain switching was unknown. In addition, the relationship between the speeds of the lattice deformation and ferroelastic domain switching had not been determined. To investigate these speeds, the research team led by Hiroshi Funakubo examined the switching behavior of Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses.

To observe the changes in the lattice and the domain structure, time-resolved in situ synchrotron X-ray diffraction was carried out in synchronization with a high-speed pulse generator. These observations were performed at the BL13XU beamline at the SPring-8 synchrotron radiation facility. The electric field pulses were applied to the PZT thin films through Pt top electrodes, which were fabricated on top of the films. Investigation of the diffraction peaks in the PZT thin films revealed elongation of the surface normal c-axis lattice parameter of the c-domain with a simultaneous decrease in the surface normal a-axis lattice parameter of the a-domain under the applied electric field. The intensities of the diffraction peaks also changed under the electric field. These observations provided direct evidence of 90° domain switching.

To determine the switching speed, the lattice elongation and domain switching behaviors were plotted as functions of time (Figure 1). These plots revealed that these processes were completed within 40 ns and occurred simultaneously in response to the applied electric field. The switching behavior was also shown to be perfectly repeatable.

The high-speed switching observed in these experiments was limited by the present electrical equipment, but is faster than that reported in previous studies. Further, this high-speed 90° switching is reversible and can be used to enhance the piezoelectric response in piezoMEMS devices by several tens of nanoseconds. Therefore, this finding is of considerable importance for the ongoing development of ultrafast electromechanical switches and sensors.


Reference

Authors: Yoshitaka Ehara1, Shintaro Yasui2, Takahiro Oikawa1, Takahisa Shiraishi1,3, Takao Shimizu4,5, Hiroki Tanaka1, Noriyuki Kanenko1, Ronald Maran6, Tomoaki Yamada7,8, Yasuhiko Imai9, Osami Sakata1,10, Nagarajan Valanoor6, and Hiroshi Funakubo1,4,5,*
Title of original paper: In-situ observation of ultrafast 90° domain switching under application of an electric field in (100)/ (001)-oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films
Journal: Scientific Reports
DOI: 10.1038/s41598-017-09389-6
Affiliations: 1Department of Innovative and Engineered Material, Tokyo Institute of Technology
2Laboratory for Materials and Structures, Tokyo Institute of Technology
3Institute for Materials Research, Tohoku University
4Materials Research Center for Element Strategy, Tokyo Institute of Technology
5School of Materials and Chemical Technology, Tokyo Institute of Technology
6School of Materials Science and Engineering, University of New South Wales
7Department of Materials, Physics and Energy Engineering, Nagoya University
8PRESTO, Japan Science and Technology Agency
9Japan Synchrotron Radiation Research Institute (JASRI)
10Synchrotron X-ray Station at SPring-8 and Synchrotron X-ray Group, National Institute for Materials Science (NIMS)


Figure 1. Responses of PZT thin film properties to applied electric field. 
Figure 1. Responses of PZT thin film properties to applied electric field.

The (a-f) capacitance, strain, tilting angle, intensity, difference capacitance, and volume fraction of the c domain were measured as functions of time, respectively. The elastic deformation and ferroelastic domain switching were completed within 40 ns.



Contacts
Emiko Kawaguchi
Public Relations Section,
Tokyo Institute of Technology
E-mail: mediaatjim.titech.ac.jp
+81-3-5734-2975

Public Relations Office,
Nagoya University
E-mail: kouhoatadm.nagoy-u.ac.jp
+81-52-789-2699
Public Relations Office,
National Research Institute for Materials Science (NIMS)
E-Mail: pressreleaseatml.nims.go.jp
Tel: +81-29-859-2026
Fax: +81-29-859-2017

Deborah Smith
Science media officer
University of New South Wales
E-mail: deborah.smithatunsw.edu.au
+61 (2) 9385 7307

Previous Article
X-ray photoelectron spectroscopy under real ambient pressure conditions. (Press Release)
Current article
High-speed switching for ultrafast electromechanical switches and sensors (Press Release)