Nuclear Weak Responses by Neutrino & Electron Probes

Hiro Ejiri JASRI SPring-8, RCNP Osaka Univ

APPEAL 8 March 2004

I. Neutrinos and nuclear weak responses.

- Neutrinos are windows for new particle and astronuclear physics.
- v : Majorana/Dirac particle, v mass, v helicity, v oscillation, flavor mixings, mass difference, v interactions in the sun, sn, stars.
- Fundamental properties of v's and week forces and v astrophysics are studied in nuclei as micro-laboratories.
- Nuclei are chosen to select weak processes of interest
- Nuclear Responses for v's are crucial. Charged (τ_+, τ_-) , neutral (τ_3) , vector $(\sigma^S S=0)$, axial v $(\sigma^S S=1)$. Nuclear $\sigma \tau$ responses $G(\alpha) \tau [\sigma^S Y_L]_J$

 $\beta\beta$, v mass and nuclear responses for v $T^{0v} = G^{0v} M^{0v} (\tau \sigma \tau \sigma r p) (\langle m_v \rangle)^2$ Majorana v, absolute mass in $\langle m \rangle \langle 0.03 \text{ eV}$.

Nuclear Responses for $0 \nu \beta \beta$

$$H(r_1, r_2, \tau_1, \tau_2, \sigma_1, \sigma_2) \sim f(r_1, r_2) \tau_1 \tau_2 \sigma_1 \sigma_2 \dots f(r_1, r_2) = 1/|r_1 - r_2|$$

Separable Form for Nucleon $r_n < r_i$, $r_j <$ Nuclear R_N f(r_1 , r_2) ~ $\Sigma f_\ell h_\ell(r_1) h_\ell(r_2)$ Ejiri, Belyaev

 $M^{0\nu} \sim \Sigma f_{\ell} < 0_{f} |T_{\ell}^{+}| i > \langle i | T_{\ell}^{+}| 0_{i} \rangle \qquad T_{\ell} = h_{\ell}(\gamma) \tau \sigma$ $M^{0\nu} \sim \Sigma M_{\ell}^{+}(SP)M_{\ell}^{-}(SP) + (M_{\ell}^{+}(GR) M_{\ell}^{-}(GR) \rightarrow \varepsilon)$ Studied by τ^{-} and τ^{+} Charge Exchange Reactions

Nuclear Responses ($M^{0\nu}$) for $\beta\beta$

 Hadron probes
 Single (³He,t, t,³He), double charge exchange (¹¹B, ¹¹Li) RCNP

• Weak e-v probes

(e,ν γ), (v,e γ),
 (e+, anti-νγ)
 (Anti-ν,e+ γ)

Solar v responses

- 1. Solar-v rates: Low-E light ions at underground lab.
- 2. Nuclear detector responses for charged and neutral currents
- 3. d, ⁷¹Ga, ¹⁰⁰Mo, ¹²⁷I, etc
- up to 15 MeV with a few $\% \delta$.

Nucleus	-Q(Me	V) pp	7Be	13N	pep	150	8B	Tota
$^{2}\text{H}^{a}$	1.442	0	0	0	0	-	6	6
³⁷ Cl ^a	0.814	0	1.1	0.1	0.2	0.3	6.1	7.9
⁴⁰ Ar ^b	>1.505	0	0	0	0	0	7.2	7.2
⁷¹ Ge ^c	0.236	70.8	35	3.7	2.9	5.8	12.9	132
¹⁰⁰ Mo ^d	0.168	639	206	22	13	32	27	965

v spectrum flux : supernova mechanism, spectrum distortion : v oscillation. v time : v mass in 30-50 eV region

v nuclear interaction v detection in nuclei, v nuclear responses.

II. Nuclear probes for v weak responses.

- Charged (τ_+, τ_-) and neutral (τ_3)
- Vector (σ^{S} S=0) and axial vector (σ^{S} S=1)
- Isospin $\langle \tau Y_L \rangle$ and spin isospin $\langle \tau \sigma Y_L \rangle_J$
- $0\nu\beta\beta$ L=0,1,2,3,4,5,
- $2\nu\beta\beta$ L = 0,1.
- Solar ν L = 0,1.
- Supernova ν L = 0,1.

E < 50 MeV E < 20 MeV E < 13 MeV E < 50 MeV v

- Weak probes v,e,µ
- EM probes e, γ
- Strong probes p,n

Hadron and EM probes

- Hodrons with strong interaction
- Charge exchange spin flip
- (p,n), (d,²He), (³He,t), (⁷Li.⁷Be).
- Double c exchange (¹¹B, ¹¹Li)

- **RCNP,MSU**, and others.
- Non-central interactions, distortions, multi step and others.
 - •EM probes : e, γ at SPring-8, and high Z Coulomb excitation
 - •Neutral current and includes T = 0,1, and
 - magnetic σ and l contributions
 - •Stretched transitions with J = J'+L,J'-L.

III. Weak probes/processes

- β decays, limited to charged current responses for
 ground states of daughter nuclei.
- v proe (v,e γ), direct but need intense v beams(10¹⁵/sec) and large detectors (10 tons) because of σ ~ 10⁻⁴¹⁻⁴² cm²
 SNS/ORLaND with 1 GeV p and J-PARC with 3 GeV p
- μ probe (μ,ν_μ) captures for T⁺ responses up to 100 MeV.
 with very large cross sections (J. Suhonen)

• e probe by (e,v $\gamma \beta$) with e- beam of I_e ~1mA, N ~ 10g, T~ 0.1 y, $\sigma \sim 10^{-40}$ cm² Y ~ 10⁴, e+ beam ~ μ A Y ~ 10.

Nuclear responses for ν 's σ for given multi polarity in 10⁻⁴¹cm² and energ H. Ejiri and J Engel PL 2002

	ν_e	ν_{ex}		
0^{+}	0.65	8.94	10 ⁻³⁸	
0-	0.02	0.59		
1^{+}	4.62	32.34		1
1-	0.14	11.86	− 10 ⁻⁴⁰	
2^{+}	0.04	4.62	(cm ²	
2^{-}	0.34	14.00	E de	3
3^{+}	0.03	3.78	10-42	-
3-		1.00		
4^{+}		0.23		Ξ
4^{-}		0.79		-
total	5.84	78.16	10 20 40 60 80	100
			E (MeV)	

Neutrinos from stopped p⁺

 $\mathbf{p} + \mathbf{Hg} \rightarrow \mathbf{n} \pi^{+}$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\mu^{+} \rightarrow \mathbf{e}^{+} + \nu_{e} + \underline{\nu}_{\mu}$

• Source

Neutrino spectra 3.5 Vμ $\bar{\nu}_{\mu}$ 3 SNS Spectrum 2.5 Luminosity [erg/s] ν_e 0.5 0 60 20 Energy [MeV] 40 **E** GeV **Detector** N_p N **6** 10¹⁵ 7 1014 **ORLaND**

SNS 1 6 10¹⁵ 7 10¹⁴ ORLaND
JHF 3 1.2 10¹⁵ 3 10¹⁴ (MOON

Electron probes for weak responses

 $\beta\beta A = B^* + \beta^- + \nu B^* + \nu = C + \beta^-$ Solar $\nu \nu + A = e + B$

•

Electron and positron probes

 Probe E MeV I σ cm² Reaction T- Mo Yield /y Electron 20 1 mA 10⁻⁴⁰ (e,vγ) 10 gr/cm² 1.1 10⁵ Positron 20 10¹²/s 10⁻⁴⁰ (e,vγ) 10 gr/cm² 1.8 10²

* 20 MeV electron range 12 gr/cm²

- Experiments
 Real time measurements with highly segmented detectors to reduce accidental coincidence from EM processes.
 Off-beam β activity to get total strength.
- 76 Ge $\beta\beta$ to 76 Se

 ⁷⁶Ge (e+, ν γ)
 ⁷⁶As
 ⁷⁶Ge 7.6 %
 ⁷⁶As 2.63 hr β- Q = 2.986 MeV

 ⁷⁶Se (e-, ν γ)
 ⁷⁶As
 ⁷⁶Se 9%

 ⁷⁸Se (e-, e- p n γ)
 ⁷⁶As
 e- energy below the threshold energy

IV:Concluding remarks

- 1. Nuclear physics of v's are new windows for physics beyond the SM and astrophysics.
- Nuclear isospin spin responses of τY_{λ} and $\tau \sigma Y_{\lambda}$ for v's are crucial for v studies in nuclei.
- 2. Hadrons with strong interactions (RCNP) for charged axial currents and photons and electrons with EM interactions (SPring-8) for neutral currents have large cross sections, but other processes and contributions.
- 3. Weak v e probes direct but extremely small σ 's
- Now v probes are realistic with J-ParC
- Weak e probes can be realistic with new e-facilities.

References

Nuclear responses for neutrinos

ReviewH.Ejiri, Phys. Rep. 338 (2000) 265.GR and ββ, solar sn v'sH.Ejiri, Nucl. Phys. A 687 (2001) 350cDouble chare exchangeH. Ejiri, K. Takahisa, et al., 1997, 2001.Supernova v responsesH.Ejiri, et al., PL B 2002Neutrino probesH. EjiriNIM 2001

Thank you for attention