Update on the Search for Pentaguarks

> Ken Hicks (Ohio University) APPEAL Seminar, SPring-8 29 June 2004

<u>Collaborators</u>

- The LEPS Collaboration
 - Special thanks: Takashi Nakano (Japan)
- The CLAS Collaboration*
 - Co-spokesman: Stepan Stepanyan (JLab)
 - Key contributions by a number of people from CLAS in calibrations, analysis, etc.

*Supported in part by NSF and DOE

<u>Outline</u>

- Introduction
 - Why is the pentaquark important?
- Pentaguarks: theoretical prediction
- Experimental evidence (since Oct. 2002)
 - Review of positive evidence experiments
 - Discussion of null-result experiments
 - Experimental outlook
- Summary

Hadron Spectroscopy 101

Mesons: quark-antiquark pair

Baryons: three quarks (valence)

Pentaquarks: 4 quarks + 1 antiquark

Each quark has a unique:

- Charge (+2/3 or -1/3)
- Flavor (u,d,s,c,b,t)
- · Color (red, green, blue)

Ken Hicks, Ohio University

S

- 1/

ū

- 2/3

SPring-8 Seminar (29 June 2004)

How simple is baryon structure?

- Bare quarks have a small mass
 - only 1% of the proton's mass is from quarks!
 - most of the mass: gluons and sea-quarks
- Quarks account for <30% of proton spin
 - so-called "spin crisis"
 - contributions from gluons, orbital L
- The proton has a "pion cloud"
 - from precise electron scattering (Q²~1)
 - 3-quark core surrounded by q-q pairs
- The proton is a complex many-body system!

Why is the Θ^+ important?

- QCD does not prohibit $q^4\overline{q}$ states
 - Early experiments saw no evidence, but what mechanism of QCD would prohibit them?
 - The pentaquark provides a new testing-ground for non-perturbative QCD.
- "Consideration of pentaquarks brings some serious shortcomings of the naïve quark model into sharp focus."
 F. Wilczek
- Lattice QCD is also challenged
 - It tests our understanding of the strong force.

Types of pentaguarks

• "Non-exotic" pentaquarks

- The antiquark has the same flavor as one of the quarks
- Difficult to distinguish from 3-quark baryons

• "Exotic" pentaquarks

- The antiquark has a different flavor than the other 4 quarks
- It has quantum numbers unique from any 3-quark baryon
- Easy to identify from experimental conservation laws

Example: uudss, non-exotic (same quantum numbers as uud) Strangeness = 0 + 0 + 0 - 1 + 1 = 0

Example: uudds, exotic Strangeness = 0 + 0 + 0 + 0 + 1 = +1

SPring-8 Seminar (29 June 2004)

SPring-8 Seminar (29 June 2004)

The Anti-decuplet predicted by Diakonov et al.

Summary of Experiments

Where	Reaction	Mass	Width	σ ΄ \$*
LEPS	$\gamma C \rightarrow K^{+}K^{-} X$	1540 +- 10	< 25	4.6
DIANA	K⁺Xe →K⁰p X	1539 +- 2	< 9	4.4
CLAS	$\gamma d \rightarrow K^{+}K^{-}p(n)$	1542 +- 5	< 21	5.2
SAPHIR	$\gamma p \rightarrow K^{+}K^{0}(n)$	1540 +- 6	< 25	4.8
ITEP	$vA \rightarrow K^{0}pX$	1533 +- 5	< 20	6.7
CLAS	$\gamma p \rightarrow \pi^+ K^- K^+(n)$	1555 +- 10	< 26	7.8
HERMES	e⁺d → K⁰p X	1526 +- 3	13 +- 9	~5
ZEUS	e⁺p → e′K⁰p X	1522 +- 3	8 +- 4	~5
COSY	$pp \rightarrow K^0 p\Sigma^+$	1530 +- 5	< 18	4-6

*Gaussian statistical significance: estimated background fluctuation

SPring-8 Seminar (29 June 2004)

Θ⁺: Negative Results

HERA-B data on Carbon target: invariant mass of pK⁰ shows no Θ⁺ peak!

Could kinematics be an issue? If Θ^+ is not produced by t-channel, then HERA-B may not see it.

Other Negative Results

- At the QNP conference (May, 2004) new negative results were shown:
 - FNAL E690 (pp \rightarrow p X at 800 GeV)
 - FNAL CDF (pp at c.m. energy 2 TeV)
 - FNAL HyperCP (mixed beam of π 's, K's, p's)
 - SLAC BaBar (B-factory e+e- collisions)
- All of these are inclusive, high-energy data sets (like HERA-B), with high statistics.

– What is this telling us??

SPring-8 Seminar (29 June 2004)

Schematic Diagram of the Reaction

Reaction diagrams

SPring-8 Seminar (29 June 2004)

LEPS: published mass plot

Assumption:

• Background is from non-resonant K⁺K⁻ production off the nucleon.

• Hydrogen target data is used to estimate the background shape

Phys.Rev.Lett. 91 (2003) 012002

hep-ex/0301020

SPring-8 Seminar (29 June 2004)

$$\label{eq:main_state} \begin{split} M &= \textbf{1.54} \pm \textbf{0.01} \ \text{MeV} \\ \Gamma &< \textbf{25} \ \text{MeV} \\ \text{Gaussian significance } \textbf{4.6} \sigma \end{split}$$

CLAS: Exclusive photoproduction

CLAS Collaboration S. Stepanyan, *et al.*, PRL 91, 252001 (2003).

- Requires FSI both nucleons involved
 - No Fermi motion correction necessary
 - FSI not rare: in ~50% of Λ(1520) events, both nucleons have p>0.2 GeV/c

Neutron found via missing mass

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

CLAS: Deuterium Results

- ~42 events in the
 narrow peak at 1542 + 5 MeV with width of
 21 MeV
- Estimated significance 5.2 +- 0.6 σ
 - Spectrum of the events associated with $\Lambda(1520)$

SPring-8 Seminar (29 June 2004)

CLAS: Θ^+ from the proton $\gamma p \pi^+ K^- K^+$ (n)Prominent \overline{K}^{*0}

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

π* π Θ^+ $\backslash | \star$

 $M = 1555 \pm 10 MeV$ Г< 26 MeV $Cos\theta^{\star}(\pi^{+}) > 0.8$ $Cos\theta^{\star}(K^{+}) < 0.6$ **CLAS** Collaboration PRL 92, 032001-1 (2004). Ken Hicks, Ohio University

Θ^+ - N* production mechanism?

- What do π⁻p scattering data say?
- π⁻p cross section data in PDG have a gap in the mass range 2.3–2.43 GeV.

HERMES: $e^+d \rightarrow K^0p X$

Detect $K^0 \rightarrow \pi^+\pi^-$ Nice clean peak.

Complicated background due to Σ^* resonances

ZEUS final

Ken Hicks, Ohio University

SPring-8 Seminar (29 June 2004)

COSY: pp $\rightarrow K^0 p \Sigma^+$

The COSY-TOF detector uses scintillators and microstrips to get good vertex reconstruction.

Finding a detached vertex is easy in the low-multiplicity environment.

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

- The TOF detector at the COSY facility in Germany
- Evidence for the Θ^+ in the reaction: $p + p \rightarrow \Sigma^+ + \Theta^+$.

SPring-8 Seminar (29 June 2004)

LEPS: new deuterium results

- Preliminary data (not yet published)
- Higher statistics (5-10 times more)
- Minimal "cuts" on the data:
 - Particle ID of K+, K-
 - Missing mass = Nucleon mass
 - Remove ϕ -meson production events
- Further cuts:
 - Photon energy
 - Remove events with more than 2 tracks
 - Remove $\Lambda(1520)$

LEPS: "Default" analysis

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

LEPS yd: Minimal Cuts

Preliminary!

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

LEPS γd: "standard" cuts Preliminary!

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

LEPS yd: error bar plot Preliminary! 70 60 50 40 30 20 10 0 1.8 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.85 1.9 MM(K-)

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University

LEPS yd: ϕ -meson background

SPring-8 Seminar (29 June 2004)

Mixed event analysis

•All correlations (due to physics processes) will disappear.

•Represent real "phase space" (detected single-particle angle and mometum spectra).

Mixed events: LH2 target

•As before, all correlations (due to physics processes) will disappear.

·Limited statistics make comparison difficult

Fermi motion correction

1st order: $MM_{\gamma K-}^{c} = MM_{\gamma K-}^{-} MM_{\gamma K+K-}^{+} M_{n}$ 2nd order: $(MM_{\gamma K-}^{c})^{2} = (MM_{\gamma K-})^{2} - P_{(K+n)}^{-}/P_{n}^{-}(MM_{\gamma K+K-}^{-} - M_{n}^{-})^{2}$

Smaller $\Delta M^2 \rightarrow$ Better correction \rightarrow Better S/N

SPring-8 Seminar (29 June 2004)

Ken Hicks, Ohio University if the peak is real.

No ΔM^2 cut

$|\Delta M^2| < 0.30 \text{ GeV}^2$

$|\Delta M^2| < 0.20 \text{ GeV}^2$

$|\Delta M^2| < 0.15 \text{ GeV}^2$

$|\Delta M^2| < 0.10 \text{ GeV}^2$

$|\Delta M^2| < 0.10 \text{ GeV}^2$

$|\Delta M^2| < 0.10 \text{ GeV}^2$

 ϕ events: 1.01 < M_{KK} < 1.03 GeV

CLAS: high-statistics run

- These data are <u>very preliminary</u>
 Calibrations are not yet tuned
- Experiment completed last month
 - only ~15% of the data is analyzed
 - physics results must first be approved by the CLAS collaboration
 - Only non-⊕⁺ plots will be shown to give a measure of the statistics

Statistics from new CLAS run

Fully exclusive processes: $\gamma d \longrightarrow K^- pK^+ n$

Outlook

- The O⁺ signal was observed on deuteron, nuclear targets, and the proton.
- The existing information does not <u>completely</u> answer questions required of a newly discovered subatomic particle:
 - Parity and spin?
 - Isospin
 - Width (Lifetime)
 - Excited states ?

Summary

- Chiral soliton model: the original motivation
- 10 independent experiments give evidence for Θ⁺.
 LEPS (Japan), DIANA (Russia), CLAS (USA), ...
- There is still a lot of experimental work needed:
 - Spin, parity, (isospin), width, E_{γ} dependence, etc.
- New experiment just completed at CLAS
 - Expect x 20 increase in statistics!
- Evidence from other experiments is still needed
 - The Θ^+ should be seen at RHIC, KEK, etc.
 - What about negative results? Understand these, too!