φ-meson photoproduction New results from LEPS/SPring-8

APPEAL Seminar September 8th, 2004

Tsutomu Mibe

Ohio university for the LEPS collaboration

Ohio University and Jefferson lab.

Jefferson laboratory Newport News, VA

Outline

- Physics motivation
- Experiment at LEPS/Spring-8
- Data analysis
- Results and discussions
- Summary

Vector Meson Photoproduction

Glueball hunt by ϕ meson photoproduction

Application of Regge phenomenology to Daughter pomeron trajectory.

Data from DESY(1978),Bonn(1974)

Ordinary meson exchange

M.A. Pichowsky and T.-S. H. Lee PRD 56, 1644 (1997)

- Prediction from
 Pomeron exchange
- – Prediction from meson exchange

Data from: LAMP2('83), DESY('76), SLAC('73), CERN('82), FNAL('79,'82), ZEUS('95,'96)

Polarization observables with linearly polarized photon

φ K+K-

Photon Polarization

ε_γ Κ⁺ Κ⁻

Decay angular distribution of ϕ meson Decay Plane $//\vec{\gamma}$ natural parity exchange $(-1)^{J}$ (Pomeron, 0+ glueball, Scalar mesons)

Decay Plane γ unnatural parity exchange -(-1)^J (Pseudoscalar mesons π,η)

Relative contributions from natural, unnatural parity exchanges

Decay angular distribution of ϕ meson

Available data

Bonn

Unpol, E_y=2.0 GeV (NP B70(1974)257)

CLAS @J-lab

Unpol, E_{γ} =3.3-3.6 GeV (PRL85(2000)4862) (hep-ex/0311024) Unpol, linear pol. data at E_{γ} =1.6-2.5 GeV

SAPHIR @ELSA/Bonn Unpol, E_γ=1.6-2.6 GeV (EPJ A17(2003)269)

New measurements near threshold at LEPS @SPring-8 linear pol. , E_{γ} =1.6-2.4 GeV

Super Photon ring-8 Ge

Third-generation synchrotron radiation facility

Thest

- Circumference: 1436 m
- 8 GeV
- 100 mA
- 62 beamlines

A 14 14 14 14

LEPS collaboration

Academia Sinica, Taiwan W.C. Chang, D.S. Oshuev, C.W. Wang, S.C. Wang Chiba University, Japan H. Kawai, T. Ooba, Y. Shiino International Institute for Advanced Studies H. Ejiri **JAERI**, Japan Y. Asano, N. Muramatsu, A. I. Titov, R.G.T. Zegers JASRI. Japan S. Date, N. Kumagai, Y. Ohashi, H. Ookuma, H. Toyokawa, T. Yorita Konan University, Japan H. Akimune Kyoto University, Japan K. Imai, T. Ishikawa, M. Miyabe, M. Niiyama, M. Yosoi Nagoya University, Japan Y. Miyachi, A. Wakai **University of Minnesota** P. Shagin

Miyazaki University, Japan T. Matsuda, Y. Toi Ohio University, U.S. K. Hicks, T. Mibe Osaka University, Japan H. Nakamura, M. Nomachi, A. Sakaguchi, Y. Sugaya, M. Sumihama Pusan National University, S.Korea J.K. Ahn. D.S. Ahn RCNP, Osaka University, Japan H. Fujimura, M. Fujiwara, T. Hotta, K. Horie, K. Kino, H. Kohri, T. Matsumura, N. Matsuoka, M. Morita, T. Nakano, T. Yorita Saskatchewan University, Canada C. Rangacharyulu Tohoku University, Japan H. Shimizu Wakayama Med. University, Japan S. Makino Yamagata University, Japan T. Iwata

The LEPS facility

Laser Electron Photon at SPring-8

Linearly polarized photon

The tagging counter

Charged particle spectrometer

Summary of data taking

- Trigger condition : TAG*STA*AC*TOF
- Run period

2000, Dec. – 2001, June (50mm-long LH2 target) 2002, May – 2003, Apr (150mm-long LH2 target) 2002, Oct. – 2003, June (150mm-long LD2 target)

- The first data set with 50mm-long LH2 target
 - Total number of trigger

1.83*10⁸ trigger (48% Horizontal, 52% Vertical pol.)

- Number of events with charged tracks

4.37*10⁷ events

Charged particle identification

Reconstructed mass

 σ (mass) = 30 MeV(typ.) for 1 GeV/c Kaon

Charged particle identification

•KKp mode •K⁺ track •K⁻ track •proton track •K+K- mode •K⁺ track •K⁻ track •K⁺p mode •K⁺ track •proton track •K⁻p mode •K⁻ track •proton track

Missing mass distribution

Reconstruction mode

KK invariant mass cut

Cut condistion for φ selection |M_{KK}-1.019|< 10 MeV

Background subtraction

Acceptance

- Monte Carlo simulation based on GEANT3
- All materials and geometry information.
- Detector efficiency and resolution
- Realistic do/dt and decay angular distribution feedbacked from real data

Consistency between KK and Kp modes

Good consistency between KK and Kp modes

(1) Acceptance calculation,(2) Background subtraction are working well.

HZ and VT consistency

 $-0.2 < t+|t|_{min} < 0. \text{ GeV}^2$

Simultaneous fit to distributions from VT and HZ data.

Good consistency between HZ and VT data

Results

differential cross sections

Fitting function $(d\sigma/dt)_{t+|t|\min=0} e^{b(t+|t|\min)}$

Solid curve: E_{γ} independent slope Dashed curve: E_{γ} dependent slope

Differential cross sections

SAPHIR J. Barth et al. EPJ A17(2003)269

CLAS D. J. Tedeschi in Proceedings of the International Symposium "EMI2001", Osaka, 2001

Differential cross section at t=-|t|_{min}

Solid curve : Model (Pomeron + Pseudo scalar exchange) by A. Titov

Decay angular distribution

$-0.2 < t+|t|_{min} < 0. \text{ GeV}^2$

Curves are fit to the data.

Summary of LEPS measurement

- Differential cross section at t=-|t|min
 - Peaking structure around E_{γ} =2.0 GeV
 - Prediction from Regge theory:
 - contribution from Pomeron increases with energy.
 - Meson and/or glueball exchange could be candidates to make the bump.
- Decay angular distribution
 - Dominant contribution from helicity conserving amplitude.
 - Natural parity exchange (N) > Unnatural parity exchange (UN).
 - No energy dependence in polarization observables. Ratio (N/UN) is energy independent.
- The bump can not be explained by pseudo scalar exchange only.
- Possible presence of additional natural parity exchange.

Open questions

- What is origin of the peaking structure ?
 - Natural parity exchange
 - Signiture of 0⁺ glueball ?
 - A fit by simple model failed.

$$\frac{d\sigma}{dt}(\gamma p \to \phi p)(t=0) = C \left(\frac{p_{\phi}}{p_{\gamma}}\right)^2 \left(\left(\frac{s-u}{2s_0}\right)^{0.16} + a \left(\frac{s-u}{2s_0}\right)^{\delta}\right)$$

- Need for further theoretical studies.
- Isospin symmetry ?
 - Glueball should be "flavor blind"
 - LEPS Deuteron target data (2002-2003)
 - CLAS Deuteron data (g2, g10)
- Measurements at E_γ=2.4-3 GeV
 - near future plan at LEPS
 - Ongoing analysis for large |t| at CLAS (g1)

Summary

- New LEPS results for differential cross section of γp φp reaction and decay angular distribution near threshold.
- Non-monotonic rise of differential cross section at t=-|t|_{min} with energy
- Dominant contribution from natural parity exchange, no energy dependence near the bump.
- A possible presence of additional natural parity exchange.

Acknowledgements

This work was greatly supported by

and many other persons. Thank you very much