大型放射光施設 SPring-8

コンテンツへジャンプする
» ENGLISH
パーソナルツール
 

光照射で物体を移動させる結晶ブラシの開発に成功 ~ゾウリムシの繊毛を模倣~(プレスリリース)

公開日
2019年08月01日
  • BL02B1(単結晶構造解析)
  • BL40XU(高フラックス)

2019年8月1日
龍谷大学

【本件のポイント】
• 龍谷大学理工学部物質化学科の内田欣吾研究室は、光に反応して曲がるミクロサイズの棒状結晶を配列した基板の開発に成功
• この基板に物体を置き、一方向から光を照射すると、ちょうどゾウリムシの繊毛の挙動のように一方向に棒状結晶が曲がり物体を移動させること可能に。光で曲がる結晶を並べた基板で、物体を移動させる様式は世界初、今後光で遠隔操作できるソフトロボットへの応用などへも期待
• 研究の成果は、ドイツ化学会「Angew. Chem. Int. Ed」の32号(8月6日発行)に掲載、Hot Paper(注目論文)、back cover(裏表紙)にも採択。(論文誌のカバーは、審査員の評価の高かった論文から採択)

 光を照射すると屈曲する結晶は、2007年、九州大学の入江正浩 教授らにより開発され、光エネルギーを駆動力として用いる人工筋肉になりうると発表されました。この実験では、曲がる結晶に球体を接着し、光を当てると持ち上げる例が示されました。内田グループでは、物体を輸送する目的で、この曲がる結晶を基板上に並べて、光照射方向を変えることで物体をいかなる方向にも運搬しうるシステムの開発に着手しました。化合物は、入江教授らが用いたジアリールエテンの同族化合物ですが、この化合物は、内田が2004年に龍谷大学の海外留学制度で2016年ノーベル化学賞に輝いたオランダのFeringa教授の研究室に1年間滞在したときに内田自身が合成した化合物です。

 この化合物は、合成時は1oで示すように開環構造をしていますが、紫外光を照射すると青色に着色した1cの構造に変わり、可視光を照射すると元の1oを再生する光スイッチ分子です(o: open-ring の頭文字、c: closed-ringの頭文字)。1oの昇華によりガラス基板上にドットを形成します。このドットを金蒸着した後、再度昇華すると、各々のドットから針状結晶が成長することを見出しました。この剣山の様に結晶が生えた表面に紫外光を照射すると、結晶は光から遠ざかる方向に曲がり、その上に置いたビーズも光から遠ざかるように転がりました。紫外線を照射する方向を変えると、ビーズが転がる方向も変わります。このような方法で、物体を転がす手法は世界的にも初めてで、今後は、ヒトが近づけない場面、例えば光で遠隔操作できるソフトロボットなどへの応用が期待されます。

発表論文について
英文タイトル:Object Transportation System Mimicking the Cilia of Paramecium aurelia Making Use of the Light-Controllable Crystal Bending Behavior of a Photochromic Diarylethene
和訳: 光で結晶の屈曲制御可能なフォトクロミックジアリールエテン結晶を用いた、ゾウリムシの繊毛の挙動をまねた物体輸送システム
掲載誌:Angewandte Chemie International Edition, 2019, 58, in press. Selected as “Hot Paper” (アンゲヴァンテケミ―(応用化学)国際版) DOI: 10.1002/anie.201907574
URL:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201907574
著者:西村 涼、安田伸広、森本正和、宮坂 博、横島 智、中村振一郎、Bernard L. Feringa, 内田欣吾

 (a)この研究に用いたジアリールエテン化合物 (1oと1c) と(b)物体を転がす概念図

(a)この研究に用いたジアリールエテン化合物 (1oと1c) と(b)物体を転がす概念図



<研究の背景>
 近年、有機分子でミクロな機械を作ることに興味がもたれています。事実、2016年のノーベル化学賞は、「分子マシンの設計と合成」のテーマに授与されました。受賞者の一人、オランダのFeringa教授は、光で駆動する分子モーターを使って分子の四輪車を走らせました。しかし、分子の動きは小さく、単独での利用は困難です。一方、分子集合体では分子の動きが蓄積され、目に見える機能が確認できます。有機分子の集合体である結晶に紫外光を照射すると変形や屈曲現象が起こることが実際に報告されています。これらの結晶は,光エネルギーを直接、力学的パワーに変換可能なため、光駆動アクチュエーターや分子機械の構成要素としての基礎研究として注目されています。

 光照射による結晶の屈曲現象は、2007年、九州大学教授であった入江教授らによってNature誌に発表され大きな反響を呼びました。これは、結晶を構成する小さな光応答分子が、光照射により結晶の表面の分子が分子サイズの異なる異性体分子に変換され、光に当たった結晶部分だけが伸びたため、結晶が曲がるという現象が観察されました。この力は非常に大きく自重の数百倍の重さの金属球をも持ち上げることが示されました。我々は、数多くの光で曲がる結晶を、光照射によって同時に曲げることで、物体を任意の方向に動かすシステムを作成できないか考えました。それは、ちょうどゾウリムシの体を覆う繊毛のように、光で動く結晶ブラシを使って物体を任意の方向に動かすイメージです。

 内田研究室では、光を照射すると色を可逆的に変えるフォトクロミック化合物、特に熱的な安定性を有するジアリールエテンという化合物を用いて光を照射して光応答する機能材料を研究してきました。ジアリールエテンは、無色の開環体と呼ばれる状態に紫外光を照射すると分子中心部が閉環し、着色した閉環体を与えます。これに可視光を照射すると元の開環体を再生します。この化合物は、光で何回も閉環・開環反応を繰り返せる事、結晶状態でもフォトクロミズムができる事に特徴があります。

 内田研究室では光で屈曲する結晶について2016年分子機械のテーマでノーベル化学賞を受賞したB. L. Feringa教授とも共同研究を行ってきました。今回の成果は、2004年に、龍谷大学の教員の長期海外研究員制度を利用し、内田がFeringa研究室で一年間研究してきた際に、Feringa研究室で合成した化合物の一つを今回のシステムにうまく利用することにより達成されました。この化合物を昇華して作成した結晶は、長さ約380ミクロン、幅約10ミクロンのサイズの針状結晶をしていますが、どの方向から紫外光を照射しても、光から遠ざかる方向に曲がり、可視光を照射すると元に戻ります。これら化合物の構造を大型放射光施設SPring-8のBL40XUBL02B1を利用して明らかにしました。この結晶の上に直径1ミリメートルほどのポリスチレンビーズを置くと、紫外光照射により光源から離れる向きに転がることが確認できました。

 世界には、すでにいくつかの物体を転がすシステムはありますが、このような光で曲がる結晶を並べる様式(図1)は、世界に例がありません。なお、この研究テーマは、平成26-30年度 新学術領域研究(領域番号2606)高次複合光応答システムの開拓と学理の構築(宮坂 博 大阪大教授代表)で内田グループが目標として掲げた研究成果です。

<研究の結果>
 今回用いたフォトクロミック化合物、ジアリールエテンの結晶の特徴は、結晶を構成する分子同士が結晶の長軸方向に分子間水素結合により連結されていることです。その水素結合のため、昇華により結晶が、その方向に成長するという事が挙げられます。

 ただ、今回難しかったのは、この曲がる結晶をある一定の間隔をあけて並べるという事でした。結晶間隔が密だと、結晶が曲がる空間が十分でなく、間隔が開きすぎると輸送させる物体が、間に挟まってしまいます。かといって、結晶を一本一本埋め込むのでは、手間がかかりすぎます。

 簡単な操作で、結晶を適切な間隔で生やすことができないか。そのために、全く新しい操作を行いました。このジアリールエテンをガラス基板上に昇華すると、高さ約0.4ミクロン、幅約0.3ミクロンのこの化合物のドットを形成します(図2b)。このまま昇華を続けますと、各々のドットがさらにその形のまま大きくなりますが、一旦、金蒸着をして結晶格子のつながりを切ってから昇華すると、そのドットを足掛かりに屈曲する針状結晶が成長しました(図2g)。この結晶は、図1に示すようにポリスチレンビーズを置いて、紫外光を照射すると、結晶は光源から離れるように曲がり、ビーズも光源から離れるように転がりました(図2 i-l)。これは、ヒトが介在するとなく光による遠隔操作で物体を輸送するシステムの雛型と言えるでしょう、今後のソフトロボットの先駆けとして、さらに技術のブラッシュアップに努めたいと思っています。

<研究の意義と今後の展開>
 現在、「自然に学ぶモノづくり」という観点から、多くの研究がおこなわれています。今回の光応答システムは、身近な例で言えばゾウリムシの繊毛運動を模倣しています。ゾウリムシの繊毛は、一本一本が協調的に動くことで、体を任意の方向に向けて泳ぐことができます。

 我々は、光で屈曲する結晶を集団的に意味ある形で曲げることで、物体を動かす仕組みを作ろうと研究を行ってきました。今回は、まだ、物体の移動距離も短く、動きもぎこちないものですが、この原理的は世界に例を見ない新しいものであるため、ドイツ化学会の世界を代表する論文誌Angewandte Chemie 誌 からフォトクロミック アクチュエーターの論文としてHot Paper (注目論文) の評価を頂き、また冊子のバックカバーアートワークにも選ばれたことは、このシステムが学会から高い評価を受けたことを意味しています。

 このシステムを円滑に動かすためには、結晶のサイズや方向をさらに揃えたりする必要があるでしょう。それが達成された時には、実際にゾウリムシのようなロボットを作成し、光で泳がせてみたいと思っています。

図1 光で曲がる結晶を並べて生やした上に置いた物体が光照射で運ばれる概念図

図1 光で曲がる結晶を並べて生やした上に置いた物体が光照射で運ばれる概念図


図2 a-h) ドット構造による結晶成長の促進。

図2 a-h) ドット構造による結晶成長の促進。

i-l) 光照射によるポリスチレンビーズの輸送。スケールバー:b) 2, d, g) 3.33 µm。i-l) 1 mm。


■画像について
・図に使用した写真等のデータがあります。使用の際は以下からダウンロードください。
・龍谷大学ホームページ(www.ryukoku.ac.jp)のトップページ上のコンテンツ「News Center」から「プレスリリース」のコンテンツに掲載されている該当ニュース内の「<報道機関向け>提供データ格納場所」へのリンク、または以下に記載のURLに直接アクセスいただき必要なデータをご利用ください。

<ドライブURL>
https://drive.google.com/drive/folders/14sfV8PQLNbb8PXqF5Im2swpHQ7orDZbb?usp=sharing
※googleドライブのサービスを利用しています
※クレジットには、「龍谷大学提供」と記載いただきますようお願い申しあげます。



問い合わせ先
<研究に関する問い合わせ先>

龍谷大学 理工学部物質化学科・教授 内田 欣吾
 研究室 Tel: 077-543-7462
 E-mail: uchidaatrins.ryukoku.ac.jp
<担当部局>
龍谷大学 研究部(瀬田) 担当者 石丸湖美・田中敦
 Tel:077-543-7742

(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター 利用推進部 普及情報課 
 TEL:0791-58-2785 FAX:0791-58-2786
 E-mail:kouhou@spring8.or.jp

ひとつ前
光電子を通じた電子の軌道混成状態の観測 -物質中の電子の広がりを可視化-(プレスリリース)
現在の記事
光照射で物体を移動させる結晶ブラシの開発に成功 ~ゾウリムシの繊毛を模倣~(プレスリリース)