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In recent years, data-driven methods have 
attracted considerable attention in the field of materials 
science. One representative method is Bayesian 
inference, which estimates the posterior probability 
distribution of parameters θθ  from experimental data D 
as p (θθ ||D). Conventional nonlinear least-squares fitting 
corresponds to point estimation; however, Bayesian 
inference estimates the probability distribution of 
possible parameter values, thereby enabling the 
evaluation of the estimation accuracy based on the 
shape and width of the distribution. We can also 
naturally incorporate knowledge already known 
from previous research into Bayesian inference as a 
prior probability distribution. Furthermore, Bayesian 
inference enables the selection of the most plausible 
model among possible models, such as fitt ing 
functions, by evaluating the posterior probability 
p (M ||D) for each model M . By replacing conventional 
nonlinear least-squares fitting with Bayesian inference, 
the amount of information extracted from experimental 
data increases considerably, leading to a better 
understanding of materials.

Nagata and Tokuda developed the Bayesian 
framework for analyzing multipeak spectra [1,2]. In 
materials science, this method has been utilized 
to analyze synchrotron radiation X-ray spectra [3]. 
Previous studies focused on one-dimensional spectra, 
whereas we established a Bayesian framework for 
multiple spectra, such as time-series spectra. We 

demonstrate the effectiveness of our framework by 
investigating the gas-adsorption process observed via 
time-resolved X-ray diffraction (Tr-XRD) [4].

We selected a typical metal-organic framework 
as a sample, a nanoporous Cu coordination polymer 
[{Cu2(pzdc)2(pyz)}n (pzdc = pyrazine-2,3-dicarboxylate; 
pyz = pyrazine)] (CPL-1). The Ar gas adsorption 
process was observed using Tr-XRD at SPring-8 
BL02B2. XRD patterns were measured continuously 
from t = 0 with an exposure time of 0.333 s. During the 
measurements, Ar gas molecules were injected into 
the sample cell at t = 6.327 s (t s). We focused on the 
031 reflection and analyzed the XRD patterns from 
7.70° to 8.22°. 

Conventional analysis based on nonlinear least-
squares fitting has several limitations. Because of 
the poor signal-to-noise ratio of the Tr-XRD data, 
conventional analysis substitutes t s for the adsorption 
start time (t 0). A time lag inevitably exists between 
the gas injection and start of adsorption, leading to 
a misunderstanding of the adsorption dynamics. In 
addition, evaluating time-evolution models describing 
the time variation of the diffraction peaks throughout 
the adsorption process is difficult; thus, a model must 
be determined prior to analysis, even when several 
model candidates exist. We aim to overcome these 
problems using Bayesian inference.

Figures 1(a-c) show the color maps of the 
observed Tr-XRD patterns and estimated results using 

Bayesian framework for analyzing adsorption processes
observed via time-resolved X-ray diffraction

Fig. 1.  (a-c) Color maps of the observed time-resolved X-ray diffraction patterns and 
estimated results with Model 1 and Model 2. (d) Comparison between Bayes free energies 
of Model 1 and Model 2. The realization probability of each model is also shown. [5]
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Model 1 and Model 2, i.e., the different time-evolution 
models in Table 1. Both models appeared to have 
good qualitative agreement with the observed data. 
To quantify the realization probability of each model, 
we calculated p (M/D) using the Bayes free energy, as 
shown in Fig. 1(d). Because the Bayes free energy 
of Model 2 was approximately 300 lower than that of 
Model 1, p (M = 2|D) was almost equal to 1. Therefore, 
the Bayesian model selection suggested that Model 2 
is considerably better than Model 1.

Based on the selected model (Model 2), we 
obtained the posterior probability distributions of t 0 
and the rate constant (κ ), as shown in Fig. 2. Using 
one standard deviation (1s) of each distribution as a 
measure of accuracy, the adsorption start time was 
estimated to be t0 = 7.4461 ± 0.0287 s. The accuracy 

was one order of magnitude greater than that of the 
conventional analysis (~0.333 s). The probability 
distribution also indicated that the probability of t0 and 
ts matching was almost zero, implying that the value 
of t0 deviated significantly from ts in this experiment. 
Because conventional analysis substitutes ts for t 0, 
such a large time lag leads to a misunderstanding 
of the adsorption dynamics. The rate constant was 
estimated to be κ = 0.6192 ± 0.0235 1/s, whereas it 
was estimated to be κ = 0.1535 1/s in the conventional 
analysis. We consider this difference to be owing to 
the time lag between ts and t0. 

In this study, we established a Bayesian framework 
for  ana lyz ing the adsorpt ion processes and 
demonstrated the effectiveness of our framework by 
investigating the Ar gas adsorption process of CPL-1. 
Bayesian analysis enables the selection of the most 
plausible model on the basis of the experimental data. 
The posterior probability distribution represents a more 
accurate estimation than the conventional analysis. 
Our framework can be applied to other dynamic 
processes, such as chemical reactions, by modifying 
the time-evolution models. Hence, Bayesian analysis 
is expected to be utilized in various areas of materials 
science research.
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Fig. 2.  Posterior probability distributions of the adsorption start time 
(t0) and rate constant (κ ). The dotted line and error bar correspond 
to the maximum and one standard deviation (1σ ) of the distribution, 
respectively, and the dash-dotted line denotes the gas-shot time (ts). [5]

Model 1 Model 2
KJMA equation KJMA equation
Linear Linear
Constant

Peak area
Peak position
Peak width Exponential

Table 1. Time-evolution models 
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