BL15XU 広エネルギー帯域先端材料解析

1. ビームライン概要

本ビームラインは、独立行政法人 物質・材料研究機構 の専用ビームラインとして同機構における新規物質材料開 発を物性解析面で推進するため、高輝度放射光を用いたさ まざまな結晶構造並びに電子構造の解析を行っている。リ ボルバー切替方式の4.5 m長アンジュレーター光源を用い ることにより、一本のビームラインで軟X線から硬X線ま での広い範囲(0.5~60 keV)で高輝度放射光の発生を実 現している。また二結晶分光器も広いエネルギー範囲をカ バーするため計算結合方式でゴニオメーターを制御し、Si 二結晶分光器の一次光として2.2~36 keVのエネルギー領 域をカバーしている。2008年度夏期停止期間内にSi二結晶 分光器の冷却方式を "ピンポスト結晶を水冷する直接冷却 方式"から"液体窒素を用いた間接冷却方式"への改造を 行った。この改造に際して、分光結晶の配置として既に日 本原子力研究開発機構ビームラインBL11XUで採用されて いるSi(111)とSi(311)の2種類の結晶を並列に配置する 方式を採用した。これにより分光器がカバーする一次光の エネルギーの上限値36 keVを実現することが出来た。

広いエネルギー範囲で高輝度の単色X線を自由に選んで 利用できることは複数の分析手法を活用できるだけでな く、ある特定の分析手法に限っても対象物質を広く選択す ることが可能である。この特徴は、2007年度からスタートし た文部科学省ナノテクノロジー・ネットワーク事業におい ても、より高度化し多彩になった外部利用者のニーズに沿 ったビームライン利用を推進することを可能にしている。

2. ビームラインの現状

・精密粉末X線回折計の整備

ビームラインの改造によって分光器のエネルギー上限値 が36 keVに拡大したことにより、キャピラリー法X線粉末 回折における試料の自己吸収効果を低減することができ、 より精密な結晶構造解析が可能となった。また、"高次光 カットミラーのベントによる試料上へのビームの垂直集 光"、"平板法"、"二次元検出器"の組み合わせによる粉末 X線回折実験を試みた。現在、100 µmのキャピラリーを使 ったキャピラリー法とほぼ同程度の高い角度分解能が二次 元検出器を使った平板法で得られることを確認している。

現在の粉末X線回折計では、二次元検出器であるイメー ジング・プレート (IP) を使い、回折データ取得において 高いスループットを実現している。しかしながら、X線露 光時間よりも試料の交換および位置合わせやIPの現像およ

び交換に要する作業時間が相対的に大きくなってしまい、 アンジュレータービームラインのX線フラックスが高いと いう利点を活かしきれていない。特に試料の精密位置合わ せ作業は人手による作業でしかも慣れを要するため、夜間 にもビームラインスタッフがビームラインについている場 合があり、過重な負荷を与えることになっている。この非 効率性を解消するためには試料の交換ー位置決め、および データの検出 - 読み出しの自動化が必要となる。この検出 器の改良は、時分割測定に代表されるような計測システム 全体として更なる高速データ取得を必要とする実験にも必 要となる。そこで、以下の2点の高度化を検討、実施した。 なお試料の交換 - 位置決め機構を検討するにあたり、 SPring-8で最初に導入されたBL02B2の試料交換ロボット を参考にした。さらに、BL15XUの実験ハッチの空間的制 限と実験ステーションの配置などから、ロボットをよりコ ンパクトに設計する必要があったため、BL02B2をベース に設計したBL19B2の試料自動交換ロボットの機構も参考 にした。

以下に試料自動交換ロボットと一次元検出器アレイの導 入について具体的に述べる。

a) 試料交換および位置あわせ作業の自動化

新たに導入された試料自動交換装置は、同時に100個のキ ャピラリーに封入された試料を保持できる試料パレットを 装備し、そのパレット上から指定した試料をロボットアー ムによって回折計回転中心の試料ホルダーに設置すること ができる。試料交換の際の位置合わせについては、直交する 2方向に設置されたCCDカメラによる試料画像から試料中 心位置のズレを自動計測し、試料ステージを自動制御して 調整するシステムを検討した。これらの試料交換・調整の自 動化は既にJASRIの粉末X線回折のビームラインBL02B2や BL19B2で実現されており、その先行技術を参考にして2009 年度システムの詳細設計と導入を行った。現状は、試料位置 合わせを手作業で行っているが、この作業がユーザーにと って時間的ロスの多い作業であるため、上記の自動化が実 現すればユーザーにとって非常に効率的な装置となる。

b) 半導体検出器等オンライン読み出しができる検出器へ の交換

「二次元検出器の半導体検出器等自動読み出しができる 検出器への交換」のためには、半導体検出器の選定が重要 である。従来のオンライン読み出しが出来るX線検出器は、 「ダイナミックレンジが狭い」あるいは「ピクセルサイズ が大きい」等の問題があり、BL15XUの高分解能の粉末 回折実験での要求性能を満たす物の選定が困難であった。 最近、この両方の性能(ダイナミックレンジ 20 ビット以 上、ピクセルサイズ約 100 µm 以下)を満足する半導体検 出器が実用段階に入った。BL15XUではこの内でDectris 社(スイス)の一次元半導体検出器Mythenを採用し、 BL15XU粉末X線回折計の特長である高角度分解能性を活 かすことを念頭に置いて回折計の改良を検討した。その外 観写真と諸元表を以下に示す。

図1 回折計の20アーム上に設置されたMythen検出器

Size of Measurement Area [mm]	64 × 6
Size of a pixel [mm]	0.05×6
Channel Number	1280
Sensor thickness [mm]	0.32
Quantum efficiency	5 keV \sim 90%, 8 keV \sim 96%
	15 keV \sim 49%, 30 keV \sim 8%
Readout time [ms]	0.3
Dynamic range [bit]	24
Counting rate par pixel	2×10^8 per strip
	(8 keV, Standard Gain)

表1 Mythen検出器の緒元

Mythen検出器はカメラ半径 955 mm となるように、回 折計 20アーム上に設置した。1ピクセルの分解能は約 0.003 度となる。検出面の全体の長さは 64 mm であり、上 記のカメラ半径では 20にして 3.8 度の範囲をカバーする。 全粉末回折パターンを測定するには 20をステップスキャ ンさせて収集したデータを連結する方法をとる。20 = 90 度まで収集する場合、ステップ幅 3 度として約30回のステ ップが必要であるが、全体での測定時間は15分程度であっ た。また、従来の 40×20 cm イメージングプレート (IP) による観測も可能である。IP カセットも改造を実施し、水 平方向の移動幅を大きくした結果、1枚のIP上に記録でき る粉末回折パターンの数は12個と、これまでの2倍となっ た。これらの回折計各部は TCP/IP 接続されたコンピュ ータ上の制御ソフトによりリモート/自動制御可能である。

3. 硬X線光電子分光の現状と実施例

2008年夏期に行った二結晶分光器の改造後の試料位置に おけるX線ビームサイズは、縦40 µm、横70 µmでフォト ンフラックスは~10¹¹ photons/secであることを確認して いる。2010年3月には、試料上でのX線ビームサイズの更 なる縮小を目的にして、新たに集光ミラーシステムを導入 した。

従来から進めてきた電圧印加-硬X線光電子分光法の開発は順調に進んでおり、Si-MOS構造への応用^[1]のほかに 種々の抵抗変化型メモリー材料への応用^[2]についても、 良い結果が得られるようになってきた。カリフォルニア大 学Davis校のC. S. FadleyグループとNIMSビームラインス タッフが共同で進めている角度分解-硬X線光電子分光の 応用開発についても、世界で初めて高エネルギーの光電子 を使ったWおよびGaAsのバンド分散の測定に成功した。 また、定在波法との組み合わせによる、多層膜界面層の検 出に関しても新しい進展があった。これらについては SPring-8 Research Fronteer誌^[3]に報告した。

4. 謝辞

BL15XU/SPring-8での光電子分光装置の導入にご尽力 いただいた広島大学HiSORの有田将司氏、島田賢也氏、 生天目博文氏、および谷口雅樹氏、(独)日本原子力研究開 発機構・放射光科学研究ユニットの竹田幸治氏および斉藤 裕児氏、(財)高輝度光科学研究センター(JASRI)の池永 英司氏に感謝いたします。

試料交換および位置あわせ作業の自動化装置の導入にあ たりJASRIの高田昌樹氏、加藤健一氏、大坂恵一氏にご指 導を頂きました。感謝致します。また一次元半導体検出器 の導入にあたりご指導を頂いたJASRIの豊川秀訓氏、広野 等子氏、古川行人氏に感謝いたします。

参考文献

- [1] Y. Yamashita et al., e-J. Surf. Sci. Nanotech. 8 (2010) 81-83.
- [2] T. Nagata et al., Appl. Phys. Lett. (2010) in press.
- [3] C. S. Fadley *et al.*, SPring-8 Research Frontier 2009, (2010) in press.

(独)物質·材料研究機構

小林 啓介、吉川 英樹、上田 茂典
山下 良之、田中 雅彦、松下 能孝
(株) スプリングエイトサービス
陸左 白班 エカ 哲

勝矢 良雄、石丸 哲